Exercices supplémentaires de stoechiométrie

1. Calculer le nombre de moles qu'il y a : a) dans 28 g d'eau et b) dans 325 mg d'aspirine, C₉H₈O₄ (325 mg est la masse habituelle d'aspirine que contiennent les comprimés).

Rép

a) 1,55 mol de H₂O

b) 1,8.10⁻³ ml de C₉H₈O₄

- 2. Calculer le nombre de moles qu'il y a dans :
 - a) 1 kg de malathion, C₁₀H₁₉O₆PS₂
 - b) 75 g de sulfate d'ammonium, Al₂(SO₄)₃
 - c) 50 mg d'essence de menthe poivrée, C₁₀H₂₀O
 - d) 2,756 g de dichromate de potassium, K₂Cr₂O₇

Rép

- a) 3,03 mol b) 0,219 mol c) 3,2.10⁻⁴ mol d) 9,368.10⁻³ mol
- 3. Combien de grammes de NH₃ peut-on espérer produire à partir de 8,5 g de H_{2 (a)}, en supposant qu'un excès de N_{2 (q)} soit disponible ? Combien de grammes de N₂ sont-ils nécessaires ?

Rép

4. La décomposition thermique du chlorate de potassium est une des méthodes classiques de préparation de l'oxygène en laboratoire. Cette réaction d'oxydo-réduction est représentée par l'équation non équilibrée suivante : $KCl_{3(s)} \rightarrow KCl_{(s)} + O_{2(g)}$. Combien de moles de O_2 peuvent être préparées à partir de 0,5 mol de KCIO₃? Combien de grammes de O₂ peuvent être préparés à partir de 30,6 g de KClO₃?

Rép 0,75 mol

5. Le phosphore réagit directement avec le sodium, ce qui donne du phosphure de sodium :

$$3Na_{(s)} + P_{(s)} \rightarrow Na_3P_{(s)}$$

Combien de grammes de Na₃P peut-on obtenir à partir de 10 g de sodium ?

Rép 14,5 g

6. Calculer le nombre maximal de grammes de Ca₃(PO₄)_{2 (s)} que l'on peut espérer obtenir à partir de 10 g de P₄O_{10 (s)}, en supposant que tout le phosphore de P₄O₁₀ se retrouve dans Ca₃(PO₄)₂.

Rép 21,8 g

7. On mélange 25 g d'aluminium avec 85 g de Fe₂O₃. La réaction est décrite par l'équation :

$$Fe_2O_{3(s)} + 2AI_{(s)} \rightarrow AI_2O_{3(s)} + 2Fe_{(s)}$$

Combien de fer sera-t-il produit au cours de cette réaction ?

Rép 51,8 g

8. Le sulfure de calcium, qui est employé dans les peintures lumineuses ainsi que dans les pâtes dépilatoires, est obtenu en réduisant le sulfate de calcium par le carbone, à haute température. L'équation non équilibrée est :

$$CaSO_{4(s)} + C_{(s)} \rightarrow CaS_{(s)} + CO_{(g)}$$

Combien de grammes de CaS peut-on obtenir à partir de 100 g de CaSO₄ et de 100 g de C?

Rép 53 g